Pasture spatial variability in floodplain areas of Northeastern Romania

Authors

  • Silviu-Costel Doru Department of Geography, Faculty of Geography and Geology, ”Alexandru Ioan Cuza” University of Iași, Romania
  • Georgiana Văculișteanu Department of Geography, Faculty of Geography and Geology; Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, ”Alexandru Ioan Cuza” University of Iași, Romania
  • Mihai Niculiță Department of Geography, Faculty of Geography and Geology, ”Alexandru Ioan Cuza” University of Iași, Romania
  • Adrian Grozavu Department of Geography, Faculty of Geography and Geology, ”Alexandru Ioan Cuza” University of Iași, Romania

Keywords:

grassland, spatial variation, land use, land use changes, floodplains

Abstract

EN. Detecting grassland spatial variation has become a major step for a correct assessment and suitable management of the grassland ecosystem. With the global concern to halt land degradation and biodiversity loss, grassland sensitivity has become a subject of intensive research. Regarding our study region, following, on one side, the historical and politico-administrative evolution, and, on the other side, the landform structure, grasslands are spread as patches along the cuesta hillslopes and floodplains. Starting from that, we have established a biogeomorphological grassland classification which includes two main types: hilly grassland and floodplain grassland. In our attempt to identify the major land use changes impacting the grassland areas, we have identified the floodplain grasslands as the most exposed to successive variability and irreversible changes in many ways. Floodplains are unique biomes with many biological, ecological, and hydrological functions, mainly covered by grassland and used for animal grazing or periodic mowing. Even so, the anthropogenic impact has been marked through various changes in the matter of land use and land cover. To assess this dynamic, we have intended a complex analysis based on historical maps, and remote sensing data, collected between 1920 and 2018. Some of the major changes have been recorded during the inter-war and the communist eras, as a direct result of economic and political variability. The pastureland was mainly gained from wetlands and substituted by cropland during the big inter-war crisis, and reconverted afterward, due to the communist land use planning program. In an attempt to identify the real cost of land use changes in the floodplain areas, we have investigated all the changes that occurred. In some cases, the applied measures were meant to protect a territory or a land use class, even if the result was quite the opposite, as is the case of urban areas affected by floods, in the ’60-’70s.

Our study aims to identify the floodplains' land cover dynamics during the last century, as the land cover assessment has become a subject of global interest because of the urgent necessity of food security and supply. Raising the problem at this level, accurate management of land use could be achieved only with a complete understanding of past changes and errors.

FR. La détection des variations spatiales des prairies est devenue une étape importante pour une évaluation correcte et une gestion adaptée de l'écosystème des prairies. La sensibilité des prairies fait l'objet de recherches intensives dans le cadre de la préoccupation mondiale visant à mettre un terme à la dégradation des sols et à la perte de biodiversité. En ce qui concerne notre région d'étude, suite à l'évolution historique et politico-administrative, d'une part, et à la structure du relief, d'autre part, les prairies sont réparties en parcelles le long des pentes des collines de la cuesta et de la plaine d'inondation. À partir de là, nous avons établi une classification biogéomorphologique des prairies qui comprend deux types principaux : les prairies de collines et les prairies de plaines inondables. Dans notre tentative d'identifier les principaux changements d'utilisation des terres ayant un impact sur les zones de prairies, nous avons identifié les prairies de plaine d'inondation comme étant les plus exposées à la variabilité successive et aux changements irréversibles d'une manière ou d'une autre. Les plaines d'inondation sont des biomes uniques dotés de nombreuses fonctions biologiques, écologiques et hydrologiques, principalement couvertes de prairies et utilisées pour le pâturage ou le fauchage périodique. Malgré cela, l'impact anthropogénique a été marqué par divers changements en matière d'utilisation et d'occupation des sols. Pour évaluer cette dynamique, nous avons prévu une analyse complexe basée sur des cartes historiques et des données de télédétection, collectées entre 1920 et 2018. Certains des principaux changements ont été enregistrés pendant l'entre-deux-guerres et l'ère communiste, en conséquence directe de la variabilité économique et politique. Les pâturages ont été principalement gagnés sur les zones humides et remplacés par des terres cultivées pendant la grande crise de l'entre-deux-guerres, puis reconvertis par la suite, en raison du programme communiste d'aménagement du territoire. Afin d'identifier le coût réel des changements d'utilisation des terres dans les zones inondables, nous avons étudié tous les changements qui se sont produits. Dans certains cas, les mesures appliquées visaient à protéger un territoire ou une classe d'occupation des sols, même si le résultat a été tout à fait contraire, comme dans le cas des zones urbaines touchées par les inondations dans les années 60 et 70.

Notre étude vise à identifier la dynamique de l'occupation du sol des plaines inondables au cours du siècle dernier, car l'évaluation de l'occupation du sol est devenue un sujet d'intérêt mondial en raison de la nécessité urgente d'assurer la sécurité et l'approvisionnement alimentaires. En soulevant le problème à ce niveau, une gestion précise de l'utilisation des terres ne peut être réalisée qu'avec une compréhension complète des changements et des erreurs du passé.

DOI: http://dx.doi.org/10.15551/lsgdc.v51i2.02

References

Afuye, G.A., Kalumba, A.M., Busayo, E.T., & Orimoloye, I.R. (2022). A bibliometric review of vegetation response to climate change. Environ. Sci. Pollut. Res. 29, 18578–18590. https://doi.org/10.1007/s11356-021-16319-7

Afuye, G.A., Kalumba, A.M., & Orimoloye, I.R. (2021). Characterization of Vegetation Response to Climate Change: A Review. Sustainability 13, 7265. https://doi.org/10.3390/su13137265

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite remote sensing of grasslands: from observation to management. J. Plant Ecol. 9, 649–671. https://doi.org/10.1093/jpe/rtw005

Badano, E.I., Cavieres, L.A., Molina-Montenegro, M.A., & Quiroz, C.L. (2005). Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. J. Arid Environ. 62, 93–108. https://doi.org/10.1016/j.jaridenv.2004.10.012

Băcăuanu, V. (1966). Contribuții la studiul ochiurilor glodoase din Câmpia Moldovei, Analele Universității „Al. I. Cuza din Iași, serie nouă, secțiunea IIb (Științe Naturale), tom XII, 199-201.

Bergman, K.-O., Ask, L., Askling, J., Ignell, H., Wahlman, H., & Milberg, P. (2008). Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers. Conserv. 17, 139–153. https://doi.org/10.1007/s10531-007-9235-x

Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E.S., & Liu, W. (2019). Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. J. Environ. Manage. 238, 484–498. https://doi.org/10.1016/j.jenvman.2019.02.064

Biró, M., Bölöni, J., & Molnár, Z. (2018). Use of long‐term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32, 660–671. https://doi.org/10.1111/cobi.13038

Brotherton, S.J., Joyce, C.B., Berg, M.J., & Awcock, G.J. (2019). Immediate and lag effects of hydrological change on floodplain grassland plants. Plant Ecol. 220, 345–359. https://doi.org/10.1007/s11258-019-00918-z

Bucur, N. (1960). Microrelieful de coșcove din partea de răsărit a țării, Analele Universității ―Al. I. Cuza din Iași, serie nouă, secțiunea II (Științe Naturale), tom VI, fasc. 2, pp. 397-407.

Chakraborty, S.K. (2021). Ecology of Fishes of Rivers: Functional Roles. In: Riverine Ecology Volume 2. Springer, Cham. pp 187–28

Davidson, N.C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934. https://doi.org/10.1071/MF14173

Dengler, J., Janišová, M., Török, P., & Wellstein, C. (2014). Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14. https://doi.org/10.1016/j.agee.2013.12.015

Dengler, J., & Tischew, S. (2018). Grasslands of Western and Northern Europe—Between Intensification and Abandonment, in: Grasslands of the World. CRC Press, pp. 41–77. https://doi.org/10.1201/9781315156125-10

Dixon, A.P., Faber-Langendoen, D., Josse, C., Morrison, J., & Loucks, C.J. (2014). Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019. https://doi.org/10.1111/jbi.12381

Doru, S.C. (2018). Analiza spațială a schimbărilor de utilizare a terenului din Județul iaşi în secolele XX-XXI, Teza de doctorat, Alexandru Ioan Cuza University

FAO (2006). http://www.fao.org/ag/AGP/AGPC/doc/crops/4d.html

Felipe-Lucia, M.R., & Comín, F.A. (2015). Ecosystem services–biodiversity relationships depend on land use type in floodplain agroecosystems. Land Use Policy 46, 201–210. https://doi.org/10.1016/j.landusepol.2015.02.003

Gallant, A. (2015). The Challenges of Remote Monitoring of Wetlands. Remote Sens. 7, 10938–10950. https://doi.org/10.3390/rs70810938

Gang, C., Wang, Z., Zhou, W., Chen, Y., Li, J., Chen, J., Qi, J., Odeh, I., & Groisman, P.Y. (2016). Assessing the Spatiotemporal Dynamic of Global Grassland Water Use Efficiency in Response to Climate Change from 2000 to 2013. J. Agron. Crop Sci. 202, 343–354. https://doi.org/10.1111/jac.12137

Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., & Odeh, I. (2014). Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72, 4273–4282. https://doi.org/10.1007/s12665-014-3322-6

Gibon, A. (2005). Managing grassland for production, the environment and the landscape. Challenges at the farm and the landscape level. Livest. Prod. Sci. 96, 11–31. https://doi.org/10.1016/j.livprodsci.2005.05.009

Gong, X., Brueck, H., Giese, K.M., Zhang, L., Sattelmacher, B., & Lin, S. (2008). Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. J. Arid Environ. 72, 483–493. https://doi.org/10.1016/j.jaridenv.2007.07.001

Goret, T., Janssens, X., & Godefroid, S. (2021). A decision-making tool for restoring lowland grasslands in Europe. J. Nat. Conserv. 63, 126046. https://doi.org/10.1016/j.jnc.2021.126046

Habel, J.C., Dengler, J., Janišová, M., Török, P., Wellstein, C., & Wiezik, M. (2013). European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138. https://doi.org/10.1007/s10531-013-0537-x

Hardy, T., Kooistra, L., Domingues Franceschini, M., Richter, S., Vonk, E., van den Eertwegh, G., & van Deijl, D. (2021). Sen2Grass: A Cloud-Based Solution to Generate Field-Specific Grassland Information Derived from Sentinel-2 Imagery. AgriEngineering 3, 118–137. https://doi.org/10.3390/agriengineering3010008

Hejcman, M., Hejcmanová, P., Pavlů, V., & Beneš, J. (2013). Origin and history of grasslands in Central Europe - a review. Grass Forage Sci. 68, 345–363. https://doi.org/10.1111/gfs.12066

Hohensinner, S., Atzler, U., Berger, M., Bozzetta, T., Höberth, C., Kofler, M., Rapottnig, L., Sterle, Y., & Haidvogl, G. (2021). Land Use and Cover Change in the Industrial Era: A Spatial Analysis of Alpine River Catchments and Fluvial Corridors. Front. Environ. Sci. 9, 647247. https://doi.org/10.3389/fenvs.2021.647247

Janssens, F., Peeters, A., Tallowin, J. R. B., Bakker, J. P., Bekker, R. M., Fillat, F. and Oomes, M. J. M., 1998. Relationship between soil chemical factors and grassland diversity. Plant and Soil. 202 (1), pp. 69-78. https://doi.org/10.1023/a:1004389614865

Jong, R., Verbesselt, J., Schaepman, M.E., & Bruin, S. (2012). Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655. https://doi.org/10.1111/j.1365-2486.2011.02578.x

Karpack, M.N., Morrison, R.R., & McManamay, R.A. (2020). Quantitative assessment of floodplain functionality using an index of integrity. Ecol. Indic. 111, 106051. https://doi.org/10.1016/j.ecolind.2019.106051

Kölbl, A., Steffens, M., Wiesmeier, M., Hoffmann, C., Funk, R., Krümmelbein, J., Reszkowska, A., Zhao, Y., Peth, S., Horn, R., Giese, M., & Kögel-Knabner, I. (2011). Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P.R. China. Plant Soil 340, 35–58. https://doi.org/10.1007/s11104-010-0473-4

Kucsicsa, G., Bălteanu, D., Popovici, E. A., & Damian, N. (2015). Land use/cover changes along the Romanian Danube Valley, International Geographical Union Commission on Land Use and Land Cover Change, Land Use/Cover Changes in selected Regions in the World, Vol XI

Liu, Y., Wang, Q., Zhang, Z., Tong, L., Wang, Z., & Li, J. (2019). Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39. https://doi.org/10.1016/j.scitotenv.2019.06.503

Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., & Huang, W. (2018). Remote sensing for wetland classification: a comprehensive review. GIScience Remote Sens. 55, 623–658. https://doi.org/10.1080/15481603.2017.1419602

Michalk, D.L., Kemp, D.R., Badgery, W.B., Wu, J., Zhang, Y., & Thomassin, P.J. (2019). Sustainability and future food security-A global perspective for livestock production. Land Degrad. Dev. 30, 561–573. https://doi.org/10.1002/ldr.3217

Minea I. (2009). Bazinul hidrografic Bahlui – studiu hidrologic. Editura Universității Alexandru Ioan Cuza din Iași, p. 364

Moser, L., Schmitt, A., Wendleder, A., & Roth, A. (2016). Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sens. 8, 302. https://doi.org/10.3390/rs8040302

Necula, N., & Niculita, M. (2023). Machine learning classification of geomorphometric segments for floodplain detection and delineation. Geomorphometry 2023. https://doi.org/10.5281/ZENODO.8009021

Niculiță, M. (2020). Geomorphometric Methods for Burial Mound Recognition and Extraction from High-Resolution LiDAR DEMs. Sensors 20, 1192. https://doi.org/10.3390/s20041192

Pantazică M., & Schram M. (1967). Contribuții la cunoașterea hidrologică a bazinului rîului Miletin, Hidrobiologia, 8, pp. 253-262

Peeters, A. (2009). Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassl. Sci. 55, 113–125. https://doi.org/10.1111/j.1744-697X.2009.00154.x

Pereira P., Francos M., Ubeda X., & Brevik E.C. (2017). Fire impacts in European grasslands ecosystems. In: Bento-Gonçalves A. J., Batista Vieira A.A., Melo Costa M.R., & Marques Aranha J.T., (eds) Wildfires - perspectives, issues and challenges of the 21st century, © 2017 Nova Science Publishers, Inc. ISBN: 978-1-53612-890-1

Pokluda, P., Hauck, D., & Cizek, L. (2012). Importance of marginal habitats for grassland diversity: fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus: Importance of marginal grasslands. Insect Conserv. Divers. 5, 27–36. https://doi.org/10.1111/j.1752-4598.2011.00146.x

Posthumus, H., Rouquette, J.R., Morris, J., Gowing, D.J.G., & Hess, T.M. (2010). A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecol. Econ. 69, 1510–1523. https://doi.org/10.1016/j.ecolecon.2010.02.011

Rajib, A., Zheng, Q., Lane, C.R., Golden, H.E., Christensen, J.R., Isibor, I.I., & Johnson, K. (2023). Human alterations of the global floodplains 1992–2019. Sci. Data 10, 499. https://doi.org/10.1038/s41597-023-02382-x

Reinermann, S., Asam, S., & Kuenzer, C. (2020). Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 12, 1949. https://doi.org/10.3390/rs12121949

Rudis, B., Gandy, D., Breza, A., Jütte, M., & Campbell, P. (2023). Create Waffle Chart Visualizations, https://CRAN.R-project.org/package=waffle

Schils, R.L.M., Bufe, C., Rhymer, C.M., Francksen, R.M., Klaus, V.H., Abdalla, M., Milazzo, F., Lellei-Kovács, E., Berge, H. ten, Bertora, C., Chodkiewicz, A., Dǎmǎtîrcǎ, C., Feigenwinter, I., Fernández-Rebollo, P., Ghiasi, S., Hejduk, S., Hiron, M., Janicka, M., Pellaton, R., Smith, K.E., Thorman, R., Vanwalleghem, T., Williams, J., Zavattaro, L., Kampen, J., Derkx, R., Smith, P., Whittingham, M.J., Buchmann, N., & Price, J.P.N. (2022). Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 330, 107891. https://doi.org/10.1016/j.agee.2022.107891

Scurlock, J.M.O., & Hall, D.O. (1998a). The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233. https://doi.org/10.1046/j.1365-2486.1998.00151.x

Scurlock, J.M.O., & Hall, D.O. (1998b). The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233. https://doi.org/10.1046/j.1365-2486.1998.00151.x

Serrano, J., Shahidian, S., Paixão, L., Marques da Silva, J., Morais, T., Teixeira, R., & Domingos, T. (2021). Spatiotemporal Patterns of Pasture Quality Based on NDVI Time-Series in Mediterranean Montado Ecosystem. Remote Sens. 13, 3820. https://doi.org/10.3390/rs13193820

Sevastos R. (1908). Descrierea geologică a regiunii Codăești și Răducăneni din Moldova de Nord, Anuarul Institutului Geologic al României, Vol.2.

Smit, H.J., Metzger, M.J., & Ewert, F. (2008). Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 98, 208–219. https://doi.org/10.1016/j.agsy.2008.07.004

Suttie, J.M., Reynolds, S.G., & Batello, C. (2005). Grasslands of the world. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

Tockner, K., & Stanford, J.A. (2002). Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330. https://doi.org/10.1017/S037689290200022X

Toogood, S.E., Joyce, C.B., & Waite, S. (2008). Response of floodplain grassland plant communities to altered water regimes. Plant Ecol. 197, 285–298. https://doi.org/10.1007/s11258-007-9378-6

Török, P., Ambarl, D., Kamp, J., Wesche, K., & Dengler, J. (2016). Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25, 2187–2195. https://doi.org/10.1007/s10531-016-1187-6

Török, P., Dembicz, I., Dajić-Stevanović, Z., & Kuzemko, A. (2020). Grasslands of Eastern Europe, in: Encyclopedia of the World’s Biomes. Elsevier, pp. 703–713. https://doi.org/10.1016/B978-0-12-409548-9.12042-1

Török, P., & Dengler, J. (2018). Palaearctic Grasslands in Transition: Overarching Patterns and Future Prospects, in: Grasslands of the World. CRC Press, pp. 29–40. https://doi.org/10.1201/9781315156125-9

Tucker, C.J., Slayback, D.A., Pinzon, J.E., Los, S.O., Myneni, R.B., & Taylor, M.G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 45, 184–190. https://doi.org/10.1007/s00484-001-0109-8

van Swaay, C.A.M. (2002). The importance of calcareous grasslands for butterflies in Europe. Biol. Conserv. 104, 315–318. https://doi.org/10.1016/S0006-3207(01)00196-3

Văculișteanu, G., Doru, S.C., Necula, N., Niculiță, M., & Mărgărint, M.C. (2022). One Century of Pasture Dynamics in a Hilly Area of Eastern Europe, as Revealed by the Land-Use Change Approach. Sustainability 15, 406. https://doi.org/10.3390/su15010406

Vijulie, I., Preda, M., Lequeux-Dincă, A.I., Cuculici, R., Matei, E., Mareci, A., Manea, G., & Tudoricu, A. (2019). Economic Productivity vs. Ecological Protection in Danube Floodplain. Case Study: Danube’s Sector between Olt and Vedea. Sustainability 11, 6391. https://doi.org/10.3390/su11226391

Viles, H. (2020). Biogeomorphology: Past, present and future. Geomorphology 366, 106809. https://doi.org/10.1016/j.geomorph.2019.06.022

Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., & Wachendorf, M. (2020). Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 12, 126. https://doi.org/10.3390/rs12010126

White, R., Murray, S., & Rohweder, M. (2001). Grassland ecosystems: pilot analysis of global ecosystems. World Resources Institute, Washington, DC.

Wu, N., Liu, A., Ye, R., Yu, D., Du, W., Chaolumeng, Q., Liu, G., & Yu, S. (2021). Quantitative analysis of relative impacts of climate change and human activities on Xilingol grassland in recent 40 years. Glob. Ecol. Conserv. 32, e01884. https://doi.org/10.1016/j.gecco.2021.e01884

Xu, F., Otte, A., Ludewig, K., Donath, T., & Harvolk-Schöning, S. (2017). Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain. Sustainability 9, 943. https://doi.org/10.3390/su9060943

Downloads

Published

2023-12-30

Issue

Section

Articles